

WebObjects:
Deployment and

Performance

David Neumann
System Engineer

David Neumann
System Engineer

Two Kinds of Scalability

¥ Logical scalability
Ð If you have it, you can manage the largest

and most complex of applications

¥ Physical scalability
Ð If you have it, you can provide the largest

number of users with acceptable
response times

Overall Deployment Architecture

- HTTP Servers launch CGI
processes for every request

Perl
Script

HTTP Server

Browsers

Your app as a Perl script
The Well-known CGI Problem

- HTTP Servers launch CGI
processes for every request

- When the request is over, the
CGI process ends

Your app as a Perl script

HTTP Server

Browsers

The Well-known CGI Problem

- What about state?

- What about massive overhead
 to essentially restart your
 application for every user
 event?

- What about database
 connections?

Your app as a Perl script

HTTP Server

Browsers

The Well-known CGI Problem

NSAPI
DLL

- HTTP Servers load a
server API ÒDLLÓ once

HTTP Server

Browsers

- Connection to
databases can be preserved

BUTÉ
1) You are now dependent on a
proprietary API

2) Like CGI, canÕt scale to processors
other than those running the
HTTP Server

3) Managing state still an issue

4) A failure in one thread will
not only take out that thread but also
potentially the entire site

Your app as a server plug-in
The Server API ÒSolutionÓ

HTTP Server

Browsers

HTTP Server
 Adapter Layer

Application
Server

Application
Server

Application
Server

- A server adapter layer accepts
HTTP requests and forwards
them to ÒpersistentÓ Application
Servers

Advantages:
- Application servers stay up and
preserve their connections

- You can have as many Application
server processes as you need Ébut no
more than you donÕt

- You can cluster application
servers on multiple machines to
offer linear horse power increases

- A problem in one process
cannot affect any other process

Use an intermediate load
balancing layer

Your app as a WebObjects Server
A Better Solution

HTTP Server

Browsers With CGI Éwhen a browser
sends a request to the server:

Application
Server

1) WebObjects CGI Adapter
launched by HTTP Server

CGI Adapter

2) Adapter forwards request
to existing Application Server

3) Application sends response to
CGI Adapter when itÕs done processing

How It Works with WebObjectsÉ

HTTP Server

Browsers With CGI Éwhen a browser
sends a request to the server:

Application
Server

1) WebObjects CGI Adapter
launched by HTTP Server

2) Adapter forwards request
to existing Application Server

3) Application sends response to
CGI Adapter when itÕs done processing
CGI process closes Ébut
Application Server does not

How It Works with WebObjectsÉ

Browsers

Application
Server

With HTTP Server APIs É

Use either:
- The API from Netscape

Netscape HTTP Server

 WebObjects NSAPI Adapter

How It Works with WebObjectsÉ

Browsers

Application
Server

With HTTP Server APIs É

Use either:
- The API from Netscape

 WebObjects ISAPI Adapter
- The API from Microsoft

orÉ

- Server API offer ultimate in
 transactional throughput

- No CGI process launching
 overhead at all

- You never write against any
proprietary API

Microsoft HTTP Server

 WebObjects NSAPI Adapter

How It Works with WebObjectsÉ

Physical Scalability

¥ Transaction throughput

Application
Server
Process

WebObjects HTTP Adapter

Your App Handling a Workgroup

HTTP Server Running HTTP server,
Application server,
Database server
on same host

Response Time Curves

0

2

4

6

8

10

Transactions per Second

e
T

im
e

Web Application on HTTP Server

Application
Server
Process

WebObjects HTTP Adapter

Scaling to More Users

HTTP Server
Running HTTP
server,
Application server,
Database server
on different hosts

conf
file

Response Time Curves

0

2

4

6

8

1 0

Transactions per Se

se
 T

im
e

Web Application on Separate Application Server

WebObjects HTTP Adapter

Scaling to More Users

HTTP Server

Add more App
server processes

conf
file

Application
Server
Process

Application
Server
Process

Application
Server
Process

Application
Server
Process

Application
Server
Process

WebObjects HTTP Adapter

HTTP Server conf
file

Scaling to Even More Users

Add more server
machines

...
Application

Server
Process

Application
Server
Process

Application
Server
Process

Application
Server
Process

Application
Server
Process

Application
Server
Process

Application
Server
Process

Application
Server
Process

Application
Server
Process

Application
Server
Process

Response Time Curves

0

2

4

6

8

10

Transactions per Second

 T
im

e

WebObjects Application Distributed to Multiple Servers

Approaches maximum throughput of HTTP server

Application
Server
Process

If the HTTP Server BottlenecksÉ

WebObjects HTTP Adapter

HTTP Server conf
file

Application
Server
Process

Application
Server
Process

Application
Server
Process

Application
Server
Process

Application
Server
Process

WebObjects HTTP Adapter

HTTP Server conf
file

...

Physical Scalability

¥ Transaction throughput

¥ Reliability

Application
Server
Process

WebObjects HTTP Adapter

Fail Over at Adaptor Level

Application
Server
Process

Application
Server
Process

Adaptor forwards to
available subset of
declared instances

conf
file

X

Application
Server
Process

WebObjects HTTP Adapter

Fail Over at Monitor Level

Application
Server
Process

Application
Server
Process

Monitor detects death and
will immediately attempt
an instance restart

X Monitor
Process

launch

conf
file

Deployment
with Monitor conf

file

Monitor
Process

Start
Service

Start
Service

Start
Service

Monitor
Backup

Host A Host B Host C Host D Host E

HTTP Server

Physical Scalability

¥ Transaction throughput

¥ Reliability

¥ High performance state management
architecture

Application Server

HTTP Server

WebObjects HTTP Adapter

Application ServerApplication Server

BrowsersBrowsersBrowsers

State Management Policy

1) Session in Server

Application Server

HTTP Server

WebObjects HTTP Adapter

Application ServerApplication Server

BrowsersBrowsersBrowsers

State Management Policy

1) Session in Server

Form Form
Form

2) Session in Page

Application Server

HTTP Server

WebObjects HTTP Adapter

Application ServerApplication Server

BrowsersBrowsersBrowsers

State Management Policy

1) Session in Server

2) Session in Page

3) Session in Cookies

Application Server

HTTP Server

WebObjects HTTP Adapter

Application ServerApplication Server

BrowsersBrowsersBrowsers

State Management Policy

1) Session in Server

2) Session in Page

3) Session in Cookies

File System

4) Session in File System

State Management Policy

5) Session in Database

Application Server

HTTP Server

WebObjects HTTP Adapter

Application ServerApplication Server

BrowsersBrowsersBrowsers

1) Session in Server

2) Session in Page

3) Session in Cookies

4) Session in File System

State Management Policy

Application Server

HTTP Server

WebObjects HTTP Adapter

Application ServerApplication Server

BrowsersBrowsersBrowsers

1) Session in Server

2) Session in Page

3) Session in Cookies

4) Session in File System

5) Session in Database

6) Other

State Policy and Load Balancing

1) Granularity of load
 balancing
2) Availability of
 sessions

State Management
Policy can affect:

Application
Server
Process

WebObjects HTTP Adapter

State in Server Process

Application
Server
Process

Application
Server
Process

1
2

Adaptor can pick any
instance when sessions
are created

3 4 5 6

Application
Server
Process

WebObjects HTTP Adapter

State in Server Process

Application
Server
Process

Application
Server
Process

1
2

Adaptor must route all subsequent requests
for the session to the same process

3 4 5 67

Load Balancing Constrained

Availability of Sessions Limited

Application
Server
Process

WebObjects HTTP Adapter

State in Server Process

Application
Server
Process

Application
Server
Process

If process exits, all sessions in it
are lost É site stays up but clients
must start new sessions

X
1

2 3 4 5 67

Load Balancing Unconstrained

Application
Server
Process

WebObjects HTTP Adapter

State in External Store

Application
Server
Process

Application
Server
Process

Adaptor can pick ANY instance
to handle the request at any time

1
2
3

4

5
6

7save session
restore session

7

Availability of Sessions Unlimited

Application
Server
Process

WebObjects HTTP Adapter

State in External Store

Application
Server
Process

Application
Server
Process

Adaptor can pick
any remaining
instance to handle request

X
1

2
3

4

5
6

7save session
restore session

State Management Trade-Offs

Server Side State

+ Works regardless of client
+ Inherently more secure
+ May be faster if RAM resource not an issue/addressed

- Can create very large footprints on the server if timeout
 not used
- Requires load balancing at the granularity of the session

(RAM)

State Management Trade-Offs

+ Page/Cookie state keeps Server footprints to a minimum
+ Allows the user to load balance at the granularity of
the request

- Some overhead required to archive/unarchive the state
- Requires a FORM or Cookie support in the browser

Client Side State

State Management Trade-Offs

Server Side State

+ Works regardless of client
+ Nearly as secure as RAM state
+ Instances do NOT grow
+ Depending on store used, can be very fast
+ Built-in session recovery
+ Get to load balance at the granularity of the request

- Overhead required to archive/unarchive state from store

(External Store)

Physical Scalability

¥ Transaction throughput

¥ Reliability

¥ High performance state management
architecture

¥ Extensible load balancing architecture

Application Server

Extensible Load
Balancing in WebObjects

- Default Adapter uses
sockets and rapid rand

 selection strategy
- HTTP-and App-side

source provided
- Comes in CGI 1.1, ISAPI,
 NSAPI 1.0 and 2.0 ÒflavorsÓ

HTTP Server-side Adapter

WODefaultAdapter

HTTP Server

Browsers

Application Server

Extensible Load
Balancing in WebObjects

HTTP Server

Browsers

- Create a custom load balancing
 scheme based on provided source
- Can continue to use default
 WOAdaptor subclass

Adapter w/ custom load balancing

WODefaultAdaptor

Other Possibilities:

Application Server

Extensible Load
Balancing in WebObjects

HTTP Server

Browsers
Other Possibilities:

- SSL AdapterDefault Adapter w/ secure socket

SSL WOAdaptor subclass

Application Server

Extensible Load
Balancing in WebObjects

HTTP Server

Browsers
Other Possibilities:

- Use existing TP Monitor to
 do load balancing strategy
- Create WOAdaptor subclass
 to listen to TP Monitor

TP Monitor

Adapter listens for TP requests

Application Server

Extensible Load
Balancing in WebObjects

Browsers or Java client
Other Possibilities:

- Use IIOP and client/server
 CORBA available in Java VMs
- Create WOAdaptor subclass
 to listen to IIOP messages

Adapter listens for IIOP requests

Physical Scalability

¥ Transaction throughput

¥ Reliability

¥ High performance state management
architecture

¥ Extensible load balancing architecture

¥ Application tuning

Development Mode: Caching Turned OFF
Page Definition Caching

page
wo file

footer
wo file

header
wo file

Application Server

1st Request

page
wo file

footer
wo file

header
wo file

Application Server

Next Request

Deployment Mode: Caching Turned ON
Page Definition Caching

page
wo file

footer
wo file

header
wo file

Application Server

1st Request

Application Server

Next Request

Deployment Mode: Caching Turned ON Selectively
Page Definition Caching

page
wo file

footer
wo file

header
wo file

Application Server

1st Request

header
wo file

Application Server

Next Request

 Application Server

Page Instance Caching
Pages in Cache DonÕt Have to be Created Again on New Requests

 Application Server

1st Request Next Request

Page
3

Page
1

Page
2

Page
3

Page cache

Session Object

Page
3

Page
3

Optimizing Page Gen Time
A Case Study in Optimizing the ÒWorstÓ Page

Unoptimized

Use Multiple Pages

Remove Debugging
Logging

Cache Page Definitions and Page Instances

Clean up code

Compile Critical Sections

Cache Computations for Read-only Objects

Add External
Session Store

3.02.51.51.00.50.0 2.0

Response Time in seconds for Single User

Optimizing Database Utilization
What EOF Technology Gives Us for Free

- Sessions multiplex across one database connection per instance
Conserve database connections

- Optimistic locking with snapshots default update strategy
Avoid deadlocks; minimize waiting for record release

- Changes made in memory propagated in batch to database
Database hits minimized; unwanted operations never hit database

- Small Tables may be cached in memory
Avoid unnecessary round trips to database

- In memory sorting and querying
Avoid round trips for filtering and presentation purposes

- Database sorting and querying
For extremely large datasets when server processing more efficient

- Objects uniqued per row in memory
Minimize need to make trips to the database; App servers smart

 enough to hand you a prefetched object instead of going to the
database every time

Physical Scalability

¥ Transaction throughput

¥ Reliability

¥ High performance state management
architecture

¥ Extensible load balancing architecture

¥ Application tuning

¥ Managing site changes

Managing
with Monitor conf

file

Monitor
Process

Host A Host B Host C

Host D

HTTP Server

Browser
Shell

Any remote
client

Starter
Daemon

Starter
Daemon

Starter
Daemon

Managing with Monitor
What You Can Administrate Remotely

- Add, remove, configure instances
Scale your site for more or less users

- Set always ON/always OFF settings on per instance basis
Force certain instances to always be ON when the Monitor runs

- Automate instance cycling on per instance basis
Avoid runaway foot-print due to undiscovered leaks

- View performance statistics for running instances
Provide feedback to instance configuration decisions

- Provide and Control Òsuper applicationÓ state
i.e. Toggle page definition caching

Super Application State
What Is It?

Method handler scope

Page scope
(disappears after request
unless cached in Session)

Session scope
state shared across all trans-
ctions (Resides in session store)

Application scope
state shared by all sessions
(Resides in process RAM)

Super Application scope
state shared by all running processes
(Resides in Monitor process)

Physical Scalability

¥ Transaction throughput

¥ Reliability

¥ High performance state management
architecture

¥ Extensible load balancing architecture

¥ Application tuning

¥ Managing site changes

¥ Handling pathological response times

Application
Server
Process

WebObjects HTTP Adapter

Application Event Processing

Application
Server
Process

Application
Server
Process

Application servers queue
requests automatically
giving each request full
speed crack at the default
shared database connection

Queue Queue Queue

Application
Server
Process

WebObjects HTTP Adapter

Application Event Processing

Application
Server
Process

Application
Server
Process

But what if one of the
requests is going to take
an unusually long time to
processÉ

Queue Queue Queue

Pathological Response Time
What to do

- If response time due to large fetch, specify a fetch record limit
Avoid massive fetches on under-qualified fetch specifications

- If response time due to unavoidable calculation or slow resource, use
 Multi-threading

Allows user to submit a long running process without blocking
the submitting user or any other users that queue into the
shared process

- Use custom load balancing scheme to dedicate each session with its
 own process

Prevent other users from queuing behind one userÕs long
response time

Tuning Tools in WebObjects

Performance
Measurement

Session Log
Perf.
Logs

Your App

Drive
Manually

Performance
Measurement

Your App

Session Log

PlaybackPlaybackPlaybackPlaybackPlayback

